Machine Learning Assisted Metal Oxide‐Bismuth Oxy Halide Nanocomposite for Electrochemical Sensing of Heavy Metals in Aqueous Media

Author:

Kailasam Vijayalakshmi1ORCID,Sankararajan Radha2,Kailasam Muthumeenakshi3,Suseela Sreeja Balakrishnapillai4

Affiliation:

1. Junior Research Fellow Department of ECE Sri Sivasubramaniya Nadar College of Engineering Kalavakkam Chennai India

2. Senior Professor & Vice Principal Department of ECE Sri Sivasubramaniya Nadar College of Engineering Kalavakkam Chennai India

3. Associate Professor Department of ECE Sri Sivasubramaniya Nadar College of Engineering Kalavakkam Chennai India

4. Associate Professor Department of ECE College of Engineering Guindy Anna University Chennai India

Abstract

AbstractHeavy metal in excess quantity is one of the major inorganic pollutants in water. It causes several hazards to human life and ecosystem. It exists in traces in most of the commonly available drinking water sources from lakes, ponds, wells, etc., However, their presence in treated water is relatively significant. As the treated water is primarily used for agricultural purposes, it is necessary to monitor and measure their concentration. This requires sensing of metals in aqueous medium with good sensitivity and stability. Recently, nanosensors coupled with electrochemical transducer is preferred for analyzing heavy metal in aqueous solutions. In this work, Silver oxide‐bismuth oxy bromide coated with nafion is proposed as an electrochemical sensor for detection of heavy metal ions in aqueous solution. Cyclic voltammetry (CV) behavior of the proposed electrode is observed in different electrolytes. Further, Differential Pulse Voltammetry (DPV) study shows that current increases with trace nickel and copper metal ions of different concentration. Further, machine learning (ML) algorithms such as Naïve Bayes, ANN, SVM and decision trees are employed for nickel ions to train the cyclic voltammetry data and evaluate its performance. Naïve Bayes algorithm provides the best accuracy of 93.2% among all the models.

Funder

Department of Science and Technology, Republic of the Philippines

SSN Educational and Charitable Trust

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3