Revisiting the role of endogenous STAT3 in HPV‐positive cervical cancer cells

Author:

Strobel Tobias D.12,Weber Maria1,Heber Nora12,Holzer Angela1,Hoppe‐Seyler Karin1,Hoppe‐Seyler Felix1ORCID

Affiliation:

1. Molecular Therapy of Virus‐Associated Cancers German Cancer Research Center (DKFZ) Heidelberg Germany

2. Faculty of Biosciences Heidelberg University Heidelberg Germany

Abstract

AbstractNovel treatment options for human papillomavirus (HPV)‐induced cancers are urgently required. The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is considered to be constitutively active in HPV‐positive cervical cancer cells and essential for their proliferation. Moreover, STAT3 was reported to undergo mutually stimulatory interactions with the HPV E6/E7 oncogenes. Thus, inhibiting STAT3 in HPV‐positive cancer cells is under discussion to provide a powerful novel therapeutic strategy. We here show that the antifungal drug ciclopirox destabilizes the STAT3 protein by acting as an iron chelator. However, by exploring the functional consequences of STAT3 inhibition in HPV‐positive cancer cells, we obtained several unexpected results. Chemical STAT3 inhibitors heterogeneously affect cervical cancer cell proliferation and those which act antiproliferative also block the growth of STAT3 knockout cells, indicating induction of off‐target effects. In contrast to several chemical inhibitors, genetic inhibition of STAT3 expression by either RNA interference or the CRISPR/Cas9 method does not appreciably affect cervical cancer cell proliferation. Transcriptome analyses indicate that blocking STAT3 expression in HPV‐positive cancer cells has very limited effects on putative STAT3 target genes. Although the targeted inhibition of specific growth‐promoting signaling pathways leads to a feedback activation of STAT3 in cervical cancer cells via Janus kinase 1/2, this does not lead to treatment resistance. Moreover, we did not obtain experimental evidence for a STAT3‐linked activation of HPV E6/E7 oncogene expression or, vice versa, an E6/E7‐dependent activation of STAT3, at endogenous conditions in cervical cancer cells. Collectively, these findings question the essential role of STAT3 in cervical cancer cell proliferation and the strategy to inhibit STAT3 in these cells for therapeutic purposes.

Funder

Wilhelm Sander-Stiftung

Publisher

Wiley

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3