Effect of amino acids on biomineralization of lead ions by Aspergillus niger

Author:

Zhang Junman1ORCID,Hao Ruixia1,Shan Bing1,Ye Yubo1,Li Jiani1,Lu Anhuai1

Affiliation:

1. Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences Peking University Beijing China

Abstract

AbstractThis study investigates the biomineralization of lead ions by Aspergillus niger from aqueous environments, focusing on the dynamic effects of fungal metabolism and biological components. Three biomolecules (glutamate, methionine, and lysine) were used to induce lead oxalate mineralization under lead stress. Comparative experiments were conducted to analyze the growth characteristics and Pb (II) removal ability of A. niger, as well as the morphological and structural properties of the resulting lead oxalate minerals using inductively coupled plasma atomic emission spectroscopy, X‐ray powder diffraction, and scanning electron microscopy–energy dispersive spectroscopy techniques. The findings reveal that A. niger plays a crucial role in controlling the mineralization process of Pb (II), with biomineralization experiments demonstrating the specific morphogenesis of lead oxalate over time. Additionally, the inclusion of the three biomolecules in the system indirectly influenced the rate of Pb (II) removal and mineral morphology. These results contribute to a better understanding of A. niger‐mediated biomineralization process of lead oxalate and suggest its potential application in the removal of Pb (II) from aqueous environments, particularly in combination with amino acids for enhanced immobilization and mineral recovery.Practitioner Points Fungal activity and amino acids play a crucial role in shaping lead oxalate crystals during water treatment processes. Specific amino acids can effectively delay lead oxalate recrystallization, enhancing the stability and removal efficiency of the crystals. Biomineralization mediated by fungi offers a promising and eco‐friendly approach for lead removal and recovery in wastewater treatment. Exploring the influence of organic additives and fungal metabolism on crystal growth provides valuable insights for developing efficient remediation strategies. Further research on the utilization of fungi and amino acids can help with innovative and sustainable wastewater treatment technologies.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Water Science and Technology,Ecological Modeling,Waste Management and Disposal,Pollution,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3