Classification of skin lesions with generative adversarial networks and improved MobileNetV2

Author:

Wang Hui1,Qi Qianqian1,Sun Weijia1,Li Xue2,Dong Boxin1,Yao Chunli2

Affiliation:

1. College of Computer Science and Engineering Changchun University of Technology Changchun China

2. Department of Dermatology The Second Hospital of Jilin University Changchun China

Abstract

AbstractMalignant skin lesions pose a great threat to patients' health, and the use of computer algorithms for automatic skin medical image classification can effectively improve the efficiency of clinical diagnosis. However, the existing methods for skin classification have complex models and are greatly affected by the imbalance of the dataset. In this work, we propose a two‐stage framework called G‐DMN, it uses CycleGAN to expand the dataset and Dense‐MobileNetV2 (DMN) to achieve the automatic classification of skin lesion images. In the first stage, we use CycleGAN for data augmentation and propose a new image pairing strategy for training. Image pairs are formed from majority class images and minority class images, generators are trained for majority to minority class image conversion, and then minority class images are generated to balance the dataset. In the second stage, we propose a lightweight model called DMN by improving MobileNetV2, it enhances feature reuse by increasing the width of the network and allows the network to focus on focal areas from different scales. The original training set combined with the generated images is used to train DMN for skin lesion classification. We tested the proposed model on the HAM10000 dataset, and the G‐DMN achieved 87.07% classification accuracy, 80.13% precision, 75.28% sensitivity, 96.19% specificity, 77.26% F1‐Score and 0.952 AUC, which has a good classification effect, while the number of parameters of the model is only 5.33 M, which is much lower than other classical classification models. We demonstrate that the proposed method is lighter and more effective than classical classification methods, achieving significant performance improvements.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Software,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of skin diseases using grab cut based segmentation with hybrid SCH feature extraction and optimized RBFN algorithm;Biomedical Signal Processing and Control;2024-10

2. Development of Framework to Find Lung Canker Using GAN Technique;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09

3. Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset;IEEE Access;2024

4. Artistic Style Recognition: Combining Deep and Shallow Neural Networks for Painting Classification;Mathematics;2023-11-07

5. Histopathological Image Classification and Vulnerability Analysis using Federated Learning;2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3