SOMA: Observability, monitoring, and in situ analytics for exascale applications

Author:

Yokelson Dewi1ORCID,Lappi Oskar2ORCID,Ramesh Srinivasan3,Väisälä Miikka S.4,Huck Kevin1,Puro Touko2,Norris Boyana1,Korpi‐Lagg Maarit5,Heljanko Keijo2,Malony Allen D.1

Affiliation:

1. Department of Computer Science University of Oregon Eugene Oregon USA

2. Department of Computer Science University of Helsinki Helsinki Finland

3. NVIDIA Corporation Santa Clara California USA

4. Institute of Astronomy and Astrophysics Academia Sinica Taipei Taiwan

5. Department of Computer Science Aalto University Espoo Finland

Abstract

SummaryWith the rise of exascale systems and large, data‐centric workflows, the need to observe and analyze high performance computing (HPC) applications during their execution is becoming increasingly important. HPC applications are typically not designed with online monitoring in mind, therefore, the observability challenge lies in being able to access and analyze interesting events with low overhead while seamlessly integrating such capabilities into existing and new applications. We explore how our service‐based observation, monitoring, and analytics (SOMA) approach to collecting and aggregating both application‐specific diagnostic data and performance data addresses these needs. We present our SOMA framework and demonstrate its viability with LULESH, a hydrodynamics proxy application. Then we focus on Astaroth, a multi‐GPU library for stencil computations, highlighting the integration of the TAU and APEX performance tools and SOMA for application and performance data monitoring.

Funder

European Research Council

U.S. Department of Energy

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enabling Performance Observability for Heterogeneous HPC Workflows with SOMA;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

2. Self Adjusting Log Observability for Cloud Native Applications;2024 IEEE 17th International Conference on Cloud Computing (CLOUD);2024-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3