Activity coefficient acquisition with thermodynamics‐informed active learning for phase diagram construction

Author:

Abranches Dinis O.1ORCID,Maginn Edward J.1ORCID,Colón Yamil J.1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana USA

Abstract

AbstractThis work explores the use of thermodynamics‐informed Gaussian processes (GPs) and active learning (AL) to model activity coefficients and construct phase diagrams. Relying on synthetic data generated from an excess Gibbs energy model, GPs were found to accurately describe the activity coefficients of several binary mixtures across large composition and temperature ranges. Moreover, GPs could estimate their own uncertainty and identify composition/temperature regions where activity coefficient data provide the most information to the models. This was leveraged to build AL algorithms targeted at modeling phase equilibria. In many cases, a single active‐learning‐acquired data point was sufficient to describe the phase diagrams studied. Finally, the ability of AL to greatly reduce the amount of data needed to obtain accurate models was further verified on experimental case studies, namely individual ion activity coefficients, the solid–liquid and vapor–liquid equilibrium of deep eutectic solvents, and phase equilibria in ternary mixtures.

Funder

Office of Science

U.S. Department of Energy

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3