InAs–InP Superlattice Nanowires with Tunable Phonon Frequencies

Author:

Zannier V.1ORCID,Trautvetter J.2,Sivan A. K.2ORCID,Rossi F.3ORCID,de Matteis D.2,Abad B.2ORCID,Rurali R.4ORCID,Sorba L.1ORCID,Zardo I.25ORCID

Affiliation:

1. NEST Istituto Nanoscienze‐CNR and Scuola Normale Superiore Piazza San Silvestro 12 Pisa I‐56127 Italy

2. Physics Department University of Basel Klingelbergstrasse 82 Basel CH‐4056 Switzerland

3. IMEM‐CNR Parco Area delle Scienze 37/A Parma I‐43124 Italy

4. Institut de Ciència de Materials de Barcelona ICMAB‐CSIC, Campus UAB Bellaterra E‐08193 Spain

5. Swiss Nanoscience Institute University of Basel Klingelbergstrasse 82 Basel CH‐4056 Switzerland

Abstract

AbstractThe control of heat conduction through the manipulation of phonons in solids is of fundamental interest and can be exploited in applications for thermoelectric conversion. In this context, the advent of novel semiconductor nanomaterials with high surface‐to‐volume ratio, e.g. nanowires, offer exciting perspectives, leading to significant leaps forwarding the efficiency of solid‐state thermoelectric converters after decades of stagnation. Beyond the high aspect ratio, the nanowire geometry offers unprecedented possibilities of materials combination and crystal phase engineering not achievable with 2D counterparts. In this work, the growth of long (up to 100 repetitions) wurtzite InAs/InP superlattice nanowires with homogeneous segment thicknesses is reported, with control down to the single digit of nanometer. By means of Raman scattering experiments, clear modifications of the phonon dispersion in superlattice nanowires are found, where both InAs‐like and InP‐like modes are present. The experimentally measured modes are well reproduced by density functional perturbation theory calculations. Remarkably, it is found that the phonon frequencies can be tuned by the superlattice periodicity, opening exciting perspectives for phonon engineering and thermoelectric applications.

Funder

Generalitat de Catalunya

H2020 Marie Skłodowska-Curie Actions

Fundación Carmen y Severo Ochoa

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

H2020 European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3