Synergistic Effect of Chiral Metasurface and Hot Carrier Injection Enabling Manipulation of Valley Polarization of WSe2 at Room Temperature

Author:

Chen Zefeng12ORCID,Shen Fuhuan2,Zhang Zhenghe1,Wu Kai1,Jin Yuxuan1,Long Mingzhu3,Wang Shaojun1,Xu Jianbing2

Affiliation:

1. School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215006 China

2. Department of Electronic Engineering The Chinese University of Hong Kong Shatin NT Hong Kong SAR 999077 China

3. South China Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 China

Abstract

AbstractThe unique band structure of monolayer transition metal dichalcogenides (TMDC) provides an important platform for spintronic and valleytronic devices. Various approaches, such as in‐plane electric field and out‐of‐plane magnetic field, have been proposed to actively control the valley polarization. In this work, we propose a synergistic effect involving chiral near‐field interactions and hot carrier injection to actively control the valley polarization emission of WSe2 at room temperature (RT). The degree of valley polarization is enhanced from near zero (for pure WSe2) to 20% under non‐resonant optical excitation (532 nm) when monolayer WSe2 is coupled with the chiral near field of plasmonic metasurface. More importantly, the application of near‐infrared light (wavelength of 970 to 1600 nm) illumination further enhances the valley polarization from 20% to 30%, which is attributed to plasmonic‐induced hot carrier injection from the metasurface to WSe2. The synergistic effect of the chiral near field and infrared light pumping offers another strategy to manipulate the valley polarization emission in monolayer TMDs at room temperature, paving the way for future applications of opto‐valleytronic/spintronic devices based on these 2D materials.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3