Nanochannel‐Based Ion Transport and Its Application in Osmotic Energy Conversion: A Critical Review

Author:

Wang Qiang1ORCID,Zhang Xu1ORCID,Zhu Huangyi1ORCID,Zhang Xiaofan1ORCID,Liu Qian1ORCID,Fu Mingxuan1ORCID,Zhu Jianjun1ORCID,Pu Jiaqi1ORCID,Qu Zhiguo1ORCID

Affiliation:

1. MOE Key Laboratory of Thermal‐Fluid Science and Engineering School of Energy and Power Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China

Abstract

AbstractNanochannel‐based ion transport is an important field of study in various disciplines, including physics, chemistry, energy, materials science, biology, and earth science. The unique features of natural nanochannels have inspired numerous innovative designs that seek to achieve high ion permeability, selectivity, and rectification. A notable example is osmotic energy conversion, which harvests sustainable salinity‐gradient energy to generate electricity without moving parts, noise, or carbon emissions and thus serves as a promising alternative to traditional fossil fuel utilization. This review focuses on the fundamental principles, regulatory methods, and practical applications of nanochannel‐based ion transport for osmotic energy conversion. The physical mechanisms of ion transport and the intriguing phenomena of ion behaviors in nanoconfined spaces are discussed first, followed by a thorough examination of the overall process of osmotic power generation from mathematical, numerical, parametric, first‐principles, molecular simulation, and modeling perspectives. Strategies for enhancing the osmotic performance are then discussed to overcome the trade‐off between ion selectivity and ion flux, including the theoretical design of nanochannel geometry and electrification, experimental optimization of nanoporous membranes, and electrolyte thermal enhancement. The existing challenges and opportunities for the future development of nanochannel‐based ion transport and osmotic power generation are addressed at the end.

Publisher

Wiley

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3