Are human activities or climate changes the main causes of soil erosion in the South African drylands?: A palaeo‐perspective from three sites in the interior

Author:

Lyons Richard1,Tooth Stephen12ORCID,Duller Geoff A. T.1,McCarthy Terence2

Affiliation:

1. Department of Geography and Earth Sciences Aberystwyth University UK

2. School of Geosciences University of the Witwatersrand South Africa

Abstract

ABSTRACTSoil erosion across South Africa's drylands occurs widely in the form of gullies and badlands (locally termed dongas) that have developed in colluvium and in valley fills along incised rivers. This erosion has commonly been attributed to land mismanagement, particularly since European settlement, but natural factors such as soil properties, local base level fall and climate change have also been invoked. To disentangle human and natural factors, we use optically stimulated luminescence (OSL) dating, supported by documentary and archaeological evidence, to constrain the timing and causes of donga formation at three widely spaced sites across interior South Africa. At all three sites, the exposed stratigraphy indicates that hillslopes and floodplains underwent net sediment accumulation during most of the late Quaternary, and that present‐day deep erosion is of a magnitude unprecedented probably within at least the past 100 ka. OSL ages indicate that the onset of erosion at each site significantly pre‐dates European incursion and instead was broadly coincident with abrupt climatic changes that occurred during the Medieval Climatic Anomaly (MCA, ~ad 900–1300) and Little Ice Age (LIA, ~ ad 1300–1800). Based on correlation with palaeoclimate proxy records, we propose that erosion was triggered by abrupt hydroclimatic oscillations during the MCA, and continued during the LIA in response to climate‐driven, large floods. At these sites, soil type and local base level falls exert secondary controls on the specific locations, processes, rates and depths of erosion. In other areas of South Africa, clear links between land mismanagement and soil erosion have been demonstrated, but for sites where detailed investigations have yet to be undertaken, these findings challenge an often default assumption that soil erosion is necessarily attributable to human factors. Our findings have significant implications for soil erosion control strategies and assessment of South African dryland landscape response to future climate changes.

Funder

Aberystwyth University

Natural Environment Research Council

National Research Foundation

University of the Witwatersrand, Johannesburg

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3