Affiliation:
1. Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education Wuhan University Wuhan China
2. School of Power and Mechanical Engineering Wuhan University Wuhan China
3. Department of Mechanical Engineering City University of Hong Kong Hong Kong China
4. Department of Mechanical Engineering The Hong Kong Polytechnic University Hong Kong China
Abstract
AbstractProgrammable droplet manipulation based on external stimulation is in high demand in various modern technologies. Despite notable progress, current manipulation strategies still suffer from a common drawback such as single control means of modulating the external stimulation input, which leads to huge challenges in sophisticated and large scale‐up droplet handling. Herein, a unique pattern‐reconfiguration‐driven droplet manipulation method is developed on conductive/nonconductive pattern surfaces under charge deposition. Contactless charge deposition induces the “edge barrier” phenomenon at the boundaries of conductive/nonconductive patterns, analogous to an invisible and tunable wall guiding droplet behaviors. The edge barrier effect can be flexibly tuned by the nonconductive surface pattern. Thus, with charge deposition, surfaces are endowed with protean control functionality. The design of conductive/nonconductive patterns can effectively enable multifunction droplet manipulations, including track‐guided sliding, sorting, merging, and mixing. Moreover, dynamical pattern reconfiguration drives programmable fluidics with sophisticated and large scale‐up droplet handling capabilities in a low‐cost and simple approach.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献