Spatiotemporal variability of the potential wind erosion risk in Southern Africa between 2005 and 2019

Author:

Kestel Florian1ORCID,Wulf Monika12,Funk Roger1

Affiliation:

1. Working Group: Soil Erosion and Feedback in Research Area 1 “Landscape Functioning” Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany

2. Institute of Biochemistry and Biology University of Potsdam Potsdam Germany

Abstract

AbstractRegional assessments of the wind erosion risk are rare and vary due to the methods used and the available data to be included. The adaptation of existing methods has the advantage that the results can be compared directly. We adopted an already successfully applied methodology (ILSWE—applied in East Africa), to investigate the spatiotemporal variability of the wind erosion risk between 2005 and 2019 in Southern Africa. The approach integrates climatic variables, a vegetation index, and soil properties to describe the potential impact of wind erosion at the landscape scale. The annual and seasonal variability is determined by the vegetation cover, whereas droughts and strong El Niño events had only regional effects. We estimated that 8.3% of the study area experiences a moderate to elevated wind erosion risk over the 15‐year period with annual and inter‐annual fluctuations showing a slight upward trend. In general, the desert and drylands in the west have the highest proportion of risk areas, the moist forests in the east are characterized by a very low risk of wind erosion, while the grasslands, shrublands, and croplands in the interior most likely react to changes of climatic conditions. The validation process is based on a comparison with the estimated frequency of dust storms derived from the aerosol optical depth and angstrom exponent and revealed an overall accuracy of 65%. The results of this study identify regions and yearly periods prone to wind erosion to prioritize for further analysis and conservation policies for mitigation and adaptation strategies.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3