Denoising and uncertainty estimation in parameter mapping with approximate Bayesian deep image priors

Author:

Hellström Max1ORCID,Löfstedt Tommy12ORCID,Garpebring Anders1ORCID

Affiliation:

1. Department of Radiation Sciences Umeå University Umeå Sweden

2. Department of Computing Science Umeå University Umeå Sweden

Abstract

AbstractPurposeTo mitigate the problem of noisy parameter maps with high uncertainties by casting parameter mapping as a denoising task based on Deep Image Priors.MethodsWe extend the concept of denoising with Deep Image Prior (DIP) into parameter mapping by treating the output of an image‐generating network as a parametrization of tissue parameter maps. The method implicitly denoises the parameter mapping process by filtering low‐level image features with an untrained convolutional neural network (CNN). Our implementation includes uncertainty estimation from Bernoulli approximate variational inference, implemented with MC dropout, which provides model uncertainty in each voxel of the denoised parameter maps. The method is modular, so the specifics of different applications (e.g., T1 mapping) separate into application‐specific signal equation blocks. We evaluate the method on variable flip angle T1 mapping, multi‐echo T2 mapping, and apparent diffusion coefficient mapping.ResultsWe found that deep image prior adapts successfully to several applications in parameter mapping. In all evaluations, the method produces noise‐reduced parameter maps with decreased uncertainty compared to conventional methods. The downsides of the proposed method are the long computational time and the introduction of some bias from the denoising prior.ConclusionDIP successfully denoise the parameter mapping process and applies to several applications with limited hyperparameter tuning. Further, it is easy to implement since DIP methods do not use network training data. Although time‐consuming, uncertainty information from MC dropout makes the method more robust and provides useful information when properly calibrated.

Funder

Cancerforskningsfonden i Norrland

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3