Insulin Extended Release from PLA‐PEG Stereocomplex Nanoparticles

Author:

Shapira‐Furman Tovi1ORCID,Domb Abraham J.1ORCID

Affiliation:

1. The Hebrew University of Jerusalem Faculty of Medicine School of Pharmacy Jerusalem 91120 Israel

Abstract

AbstractThis report addresses the challenges of controlled drug delivery for peptide and protein therapeutics by introducing a novel approach of nano formulation fabricated in aqueous media applying stereo‐interaction mechanism with poly(D‐lactide)‐polyethylene glycol (D‐PLA‐PEG). To overcome the inherent poor stability of peptide and protein therapeutics, stereocomplexation of the peptide, insulin, is applied, onto D‐PLA‐PEG in aqueous media. Nanoparticles of ≈400 nm are spontaneously formed when water‐soluble D configured PLA‐PEG diblock copolymer and L‐ configured insulin interlock into a stereocomplex, owing to their concave convex fitness. In vitro release of insulin from stereocomplex in phosphate buffer solution (PBS) pH 7.4 solution shows sustained release for 14 weeks. The therapeutic efficacy of the PLA‐insulin stereocomplex nanoparticles are evaluated in diabetic Akita mice. Blood glucose levels and body weight are closely monitored for a period of 17 weeks, revealing a significant reduction in glucose levels of the Akita mice treated with insulin stereocomplex, as well as normal body weight gain. These findings suggest that the stereocomplex nanoparticles of insulin‐D‐PLA‐PEG present a promising and effective sustained and extended release platform for insulin. Notably, the use of water‐soluble D‐PLA‐PEG for stereocomplexation in water expands the applicability of this approach to fabricate controlled delivery systems for peptide and protein therapeutics.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Peptide and Protein Stereocomplexes;ACS Omega;2024-04-08

2. Biocompatibility of insulin-PLA stereocomplex;Journal of Bioactive and Compatible Polymers;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3