Review of multi‐scale mechanical behavior research on composite solid propellants based on data‐driven approach

Author:

Yuan Bin1,Qiang Hongfu1,Wang Xueren1,Chen Tiezhu1

Affiliation:

1. Zhi-jian Laboratory PLA Rocket Force University of Engineering Xi'an 710025 China

Abstract

AbstractComposite solid propellant is a kind of viscoelastic composite with high filling ratio and multi‐scale composition characteristics, and its macroscopic mechanical properties strongly depend on the microstructure of the propellant materia. However, with the increasing complexity of composition, structure and properties of composite solid propellants, the traditional research paradigm based on experimental observation, theoretical modeling and numerical simulation has encountered new scientific challenges and technical bottlenecks in the mechanical behavior analysis, charge design and manufacturing of composite solid propellants. Among them, the problems such as insufficient experimental observation, lack of theoretical model, limited numerical analysis and difficult verification of results restrict the development of composite solid propellants in future‐oriented engineering applications to a certain extent. The data‐driven computational mechanics method can directly establish complex relationships between variables from high‐dimensional and high‐throughput data, which can capture trends that are difficult to be found by traditional mechanics research methods, and has inherent advantages in the analysis, prediction and optimization of complex systems. This paper mainly reviews and evaluates the research of neural network based modeling, model‐free data‐driven calculation and data‐driven multi‐scale calculation, which provides the correct direction for the subsequent research of multi‐scale mechanical behavior of composite solid propellants based on data‐driven.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3