Research on multiphase flow field characteristics of underwater gun double‐tube parallel firing

Author:

Zhang Xuan1,Yu Yonggang1ORCID,Zhang Xinwei1

Affiliation:

1. School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China

Abstract

AbstractThe underwater muzzle flow field formed by the double‐tube launch will interfere with each other, resulting in large changes in the characteristic parameters of the flow field and shock wave morphology. Therefore, the numerical model of three‐dimensional unsteady multiphase flow for underwater gun‐sealed launching was established. Meanwhile, an experimental platform for the underwater sealed launch was built and the rationality of the model was verified. The interior ballistic process compiled by UDF was coupled with the dynamic mesh technology, and the VOF multiphase flow model integrated with the Schnerr‐Sauer cavitation model was chosen to numerically calculate the muzzle flow field of the 30 mm underwater gun double‐tube parallel launch, and the numerical results were compared to those of the single‐tube launch. The results show that the gas is expelled from the muzzle and rapidly expands to form a gas cavity, and the “necking” phenomenon of the gas cavity occurs at 0.2 ms, while the Mach disk structure has formed. Due to the mutual interference between the flow fields formed by each tube, the diameters of the Mach disk are slightly different, and the flow field structure has a certain asymmetry in the evolution process. The core area of the shock wave is bowl‐shaped of the single‐tube launch, while it is not completely filled of the double‐tube launch. Within 0.5 ms, the diameter of the Mach disk increases monotonously when the single‐tube is launched, while it first increases and then decays by a double‐tube.

Funder

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3