Affiliation:
1. Department of Materials Escuela Politécnica Nacional (EPN) Quito Ecuador
2. São Carlos Institute of Physics University of São Paulo (USP) São Carlos Brazil
Abstract
AbstractCarbon dots (CDs) correspond to carbon‐based materials (CBM) with sizes usually below 10 nm. These nanomaterials exhibit attractive properties such us low toxicity, good stability, and high conductivity, which have promoted their thorough study over the past two decades. The current review describes four types of CDs: carbon quantum dots (CQDs), graphene quantum dots (GQDs), carbon nanodots (CNDs), and carbonized polymers dots (CPDs), together with the state of the art of the main routes for their preparation, either by “top‐down” or “bottom‐up” approaches. Moreover, among the various usages of CDs within biomedicine, we have focused on their application as a novel class of broad‐spectrum antibacterial agents, concretely, owing their photoactivation capability that triggers an enhanced antibacterial property. Our work presents the recent advances in this field addressing CDs, their composites and hybrids, applied as photosensitizers (PS), and photothermal agents (PA) within antibacterial strategies such as photodynamic therapy (PDT), photothermal therapy (PTT), and synchronic PDT/PTT. Furthermore, we discuss the prospects for the possible future development of large‐scale preparation of CDs, and the potential for these nanomaterials to be employed in applications to combat other pathogens harmful to human health.This article is categorized under:
Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease
Funder
Escuela Politécnica Nacional
Subject
Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献