Autorepression‐Based Conditional Gene Expression System in Yeast for Variation‐Suppressed Control of Protein Dosage

Author:

Azizoğlu Aslı1,Loureiro Cristina1,Venetz Jonathan1,Brent Roger2

Affiliation:

1. Computational Systems Biology and Swiss Institute of Bioinformatics ETH Zurich Basel Switzerland

2. Division of Basic Sciences Fred Hutchinson Cancer Research Center Seattle Washington

Abstract

AbstractConditional control of gene expression allows an experimenter to investigate many aspects of a gene's function. In the model organism Saccharomyces cerevisiae, a number of methods to control gene expression are widely practiced, including induction by metabolites, small molecules, and even light. However, all current methods suffer from at least one of a set of drawbacks, including need for specialized growth conditions, leaky expression, or requirement of specialized equipment. Here we describe protocols using two transformations to construct strains that carry a new controller in which all these drawbacks are overcome. In these strains, the expression of a controlled gene of interest is repressed by the bacterial repressor TetR and induced by anhydrotetracycline. TetR also regulates its own expression, creating an autorepression loop. This autorepression allows tight control of gene expression and protein dosage with low cell‐to‐cell variation in expression. A second repressor, TetR‐Tup1, prevents any leaky expression. We also present a protocol showing a particular workhorse application of such strains to generate synchronized cell populations. We turn off expression of the cell cycle regulator CDC20 completely, arresting the cell population, and then we turn it back on so that the synchronized cells resume cell cycle progression. This control system can be applied to any endogenous or exogenous gene for precise expression. © 2023 Wiley Periodicals LLC.Basic Protocol 1: Generating a parent WTC846 strainBasic Protocol 2: Generating a WTC846 strain with controlled expression of the targeted geneAlternate Protocol: CRISPR‐mediated promoter replacementBasic Protocol 3: Cell cycle synchronization/arrest and release using the WTC846‐K3::CDC20 strain

Funder

National Science Foundation

National Cancer Institute

National Institutes of Health

Publisher

Wiley

Subject

Medical Laboratory Technology,Health Informatics,General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3