Using forest plots to interpret covariate effects in pharmacometric models

Author:

Jonsson E. Niclas1ORCID,Nyberg Joakim1ORCID

Affiliation:

1. Pharmetheus AB Uppsala Sweden

Abstract

AbstractThe inclusion of covariates in pharmacometric models is important due to their ability to explain variability in drug exposure and response. Clear communication of the impact of covariates is needed to support informed decision making in clinical practice and in drug development. However, effectively conveying these effects to key stakeholders and decision makers can be challenging. Forest plots have been proposed to meet these communication needs. However, forest plots for the illustration of covariate effects in pharmacometrics are complex combinations of model predictions, uncertainty estimates, tabulated results, and reference lines and intervals. The purpose of this tutorial is to outline the aspects that influence the interpretation of forest plots, recommend best practices, and offer specific guidance for a clear and transparent communication of covariate effects.

Publisher

Wiley

Reference20 articles.

1. Essential Pharmacokinetic Information for Drug Dosage Decisions: A Concise Visual Presentation in the Drug Label

2. Forest plots: trying to see the wood and the trees

3. Evaluation of covariate effects using forest plots and introduction to the coveffectsplot R package

4. MouksassiS RichR DeanA.coveffectsplot: Produce forest plots to visualize covariate effects.2022.https://cran.rstudio.com/web/packages/coveffectsplot/

5. BarretK GreenS NevisonA‐C.pmforest: Create forest plots.2023.https://github.com/metrumresearchgroup/pmforest

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3