Navigating the landscape of parameter identifiability methods: A workflow recommendation for model development

Author:

van Noort Martijn1ORCID,Ruppert Martijn1ORCID,DeJongh Joost1ORCID,Marostica Eleonora1,Bosch Rolien1ORCID,Mešić Emir1,Snelder Nelleke1ORCID

Affiliation:

1. LAP&P Consultants BV Leiden The Netherlands

Abstract

AbstractIn pharmacometric modeling, it is often important to know whether the data is sufficiently rich to identify the parameters of a proposed model. While it may be possible to assess this based on the results of a model fit, it is often difficult to disentangle identifiability issues from other model fitting and numerical problems. Furthermore, it can be of value to ascertain identifiability beforehand. This paper compares four methods for parameter identifiability, namely Differential Algebra for Identifiability of SYstems (DAISY), the sensitivity matrix method (SMM), Aliasing, and the Fisher information matrix method (FIMM). We discuss the characteristics of the methods and apply them to a set of applications, consisting of frequently used PK model structures, with suitable dosing regimens and sampling times. These applications were selected to validate the methods and demonstrate their usefulness. While traditional identifiability analysis provides a categorical result [PLoS One, 6, 2011, e27755; CPT Pharmacometrics Syst Pharmacol, 8, 2019, 259; Bioinformatics, 30, 2014, 1440], we argue that in practice a continuous scale better reflects the limitations on the data and is more informative. The methods were generally consistent in their evaluation of the applications. The Fisher information matrix method seemed to provide the most consistent answers. All methods provided information on the parameters that were unidentifiable. Some of the results were unexpected, indicating identifiability issues where none were foreseen, but could be explained upon further analysis. This illustrated the usefulness of identifiability assessment.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3