Finite/fixed‐time synchronization of nonidentical chaotic delayed neural networks with Markovian jump and uncertainties via sliding mode control

Author:

Xu Zhenyu1ORCID,Zhu Song1ORCID,Liu Xiaoyang2ORCID,Wen Shiping3

Affiliation:

1. School of Mathematics China University of Mining and Technology Xuzhou China

2. School of Computer Science and Technology Jiangsu Normal University Xuzhou China

3. Australian AI Institute Faculty of Engineering and Information Technology University of Technology Sydney Sydney Australia

Abstract

AbstractThis article investigates the finite/fixed‐time synchronization problem of Markovian jumping delayed chaotic recurrent neural networks with uncertainties by employing sliding mode control method. In order to cope with Markovian jump and parameter uncertainties, sliding model control is used for its strong robustness and insensitivity character to external disturbances and parameter variations. Above all, two simplified sliding mode surfaces are constructed. Following that, matching controllers are constructed to guarantee the finite/fixed‐time reachability of sliding mode surfaces. Additionally, the dynamics of the sliding mode surfaces can be achieved in a finite/fixed‐time. Based on the Lyapunov stability theory, some sufficient conditions are proposed to guarantee the finite/fixed‐time synchronization. Compared with the conclusions of the existing literature, this article generalizes the corresponding results to Markovian jump, parameter uncertainties, and nonidentical systems. Finally, two numerical examples are given to illustrate the effectiveness of the obtained theoretical results.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3