Development and application of neonatal physiology‐based pharmacokinetic models of amikacin and fosfomycin to assess pharmacodynamic target attainment

Author:

Darlow Christopher A.1ORCID,Parrott Neil2ORCID,Peck Richard W.12ORCID,Hope William1ORCID

Affiliation:

1. Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology University of Liverpool Liverpool UK

2. Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel Basel Switzerland

Abstract

AbstractAntimicrobial resistance increasingly complicates neonatal sepsis in a global context. Fosfomycin and amikacin are two agents being tested in an ongoing multicenter neonatal sepsis trial. Although neonatal pharmacokinetics (PKs) have been described for these drugs, the physiological variability within neonatal populations makes population PKs in this group uncertain. Physiologically‐based pharmacokinetic (PBPK) models were developed in Simcyp for fosfomycin and amikacin sequentially for adult, pediatric, and neonatal populations, with visual and quantitative validation compared to observed data at each stage. Simulations were performed using the final validated neonatal models to determine drug exposures for each drug across a demographic range, with probability of target attainment (PTA) assessments. Successfully validated neonatal PBPK models were developed for both fosfomycin and amikacin. PTA analysis demonstrated high probability of target attainment for amikacin 15 mg/kg i.v. q24h and fosfomycin 100 mg/kg (in neonates aged 0–7 days) or 150 mg/kg (in neonates aged 7–28 days) i.v. q12h for Enterobacterales with fosfomycin and amikacin minimum inhibitory concentrations at the adult breakpoints. Repeat analysis in premature populations demonstrated the same result. PTA analysis for a proposed combination fosfomycin‐amikacin target was also performed. The simulated regimens, tested in a neonatal sepsis trial, are likely to be adequate for neonates across different postnatal ages and gestational age. This work demonstrates a template for determining target attainment for antimicrobials (alone or in combination) in special populations without sufficient available PK data to otherwise assess with traditional pharmacometric methods.

Publisher

Wiley

Subject

Pharmacology (medical),Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3