Clinical decision support for chemotherapy‐induced neutropenia using a hybrid pharmacodynamic/machine learning model

Author:

Hughes Jasmine H.1ORCID,Tong Dominic M. H.1,Burns Vanessa1,Daly Bobby2,Razavi Pedram2,Boelens Jaap J.2,Goswami Srijib1,Keizer Ron J.1

Affiliation:

1. Insight Rx, Inc. San Francisco California USA

2. Memorial Sloan Kettering Cancer Center New York New York USA

Abstract

AbstractConsensus guidelines recommend use of granulocyte colony stimulating factor in patients deemed at risk of chemotherapy‐induced neutropenia, however, these risk models are limited in the factors they consider and miss some cases of neutropenia. Clinical decision making could be supported using models that better tailor their predictions to the individual patient using the wealth of data available in electronic health records (EHRs). Here, we present a hybrid pharmacokinetic/pharmacodynamic (PKPD)/machine learning (ML) approach that uses predictions and individual Bayesian parameter estimates from a PKPD model to enrich an ML model built on her data. We demonstrate this approach using models developed on a large real‐world data set of 9121 patients treated for lymphoma, breast, or thoracic cancer. We also investigate the benefits of augmenting the training data using synthetic data simulated with the PKPD model. We find that PKPD‐enrichment of ML models improves prediction of grade 3–4 neutropenia, as measured by higher precision (61%) and recall (39%) compared to PKPD model predictions (47%, 33%) or base ML model predictions (51%, 31%). PKPD augmentation of ML models showed minor improvements in recall (44%) but not precision (56%), and data augmentation required careful tuning to control overfitting its predictions to the PKPD model. PKPD enrichment of ML shows promise for leveraging both the physiology‐informed predictions of PKPD and the ability of ML to learn predictor‐outcome relationships from large data sets to predict patient response to drugs in a clinical precision dosing context.

Funder

National Institutes of Health

Emerson Collective

Publisher

Wiley

Subject

Pharmacology (medical),Modeling and Simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3