Ecological dynamic regimes: Identification, characterization, and comparison

Author:

Sánchez‐Pinillos Martina1ORCID,Kéfi Sonia1,De Cáceres Miquel2ORCID,Dakos Vasilis1

Affiliation:

1. ISEM, CNRS, Université de Montpellier, IRD, EPHE Montpellier France

2. CREAF, Bellaterra (Cerdanyola del Vallès) Barcelona Spain

Abstract

AbstractUnderstanding ecological dynamics has been a central topic in ecology since its origins. Yet, identifying dynamic regimes remains a research frontier for modern ecology. The concept of ecological dynamic regime (EDR) emerged to emphasize the dynamic property of steady states in nature and refers to the fluctuations of ecosystems around some trend or average. Identifying and characterizing EDRs is of utmost importance in the current context of global change since they form the reference against which post‐disturbance dynamics must be compared to assess ecological resilience. However, the implementation of EDRs in empirical science is still challenging given the high dimensionality and stochasticity of ecological data and the large volume of data required to distinguish stochastic dynamics from general and predictable dynamics. The era of big data and the recent advances in quantitative ecology and data science offer an opportunity to study dynamic regimes using empirical approaches from a new perspective. This paper presents a novel methodological framework to describe EDRs from a set of ecological trajectories defined by the temporal changes of state variables in a multidimensional state space. In our framework, we formally define EDRs and include analytical tools to identify, characterize, and compare EDRs based on their geometric characteristics. More specifically, we propose different ways to identify EDRs from empirical data, develop a new algorithm to identify representative trajectories summarizing the main dynamic patterns, propose a set of metrics to describe the internal distribution of ecological trajectories, and define a dissimilarity index to compare two or more dynamic regimes based on their shape and position in the state space. We used artificial data to illustrate the different elements of our framework and applied our analyses to real data, using permanent sampling plots of Canadian boreal forests as an example. Overall, our framework contributes to filling the gap between theoretical and empirical ecology by providing robust analytical tools to assess ecological resilience and study ecosystem dynamics from a multidimensional perspective and considering the variability of natural systems.

Funder

European Commission

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3