Rapid quantitative magnetization transfer imaging: Utilizing the hybrid state and the generalized Bloch model

Author:

Assländer Jakob12ORCID,Gultekin Cem3ORCID,Mao Andrew124ORCID,Zhang Xiaoxia12ORCID,Duchemin Quentin5ORCID,Liu Kangning6ORCID,Charlson Robert W.7,Shepherd Timothy M.1ORCID,Fernandez‐Granda Carlos36ORCID,Flassbeck Sebastian12ORCID

Affiliation:

1. Center for Biomedical Imaging, Department of Radiology NYU School of Medicine New York New York USA

2. Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology NYU School of Medicine New York New York USA

3. Courant Institute of Mathematical Sciences New York University New York New York USA

4. Vilcek Institute of Graduate Biomedical Sciences NYU School of Medicine New York New York USA

5. Laboratoire d'analyse et de mathématiques appliquées Université Gustave Eiffel Champs‐sur‐Marne France

6. Center for Data Science New York University New York New York USA

7. Department of Neurology NYU School of Medicine New York New York USA

Abstract

AbstractPurposeTo explore efficient encoding schemes for quantitative magnetization transfer (qMT) imaging with few constraints on model parameters.Theory and MethodsWe combine two recently proposed models in a Bloch‐McConnell equation: the dynamics of the free spin pool are confined to the hybrid state, and the dynamics of the semi‐solid spin pool are described by the generalized Bloch model. We numerically optimize the flip angles and durations of a train of radio frequency pulses to enhance the encoding of three qMT parameters while accounting for all eight parameters of the two‐pool model. We sparsely sample each time frame along this spin dynamics with a three‐dimensional radial koosh‐ball trajectory, reconstruct the data with subspace modeling, and fit the qMT model with a neural network for computational efficiency.ResultsWe extracted qMT parameter maps of the whole brain with an effective resolution of 1.24 mm from a 12.6‐min scan. In lesions of multiple sclerosis subjects, we observe a decreased size of the semi‐solid spin pool and longer relaxation times, consistent with previous reports.ConclusionThe encoding power of the hybrid state, combined with regularized image reconstruction, and the accuracy of the generalized Bloch model provide an excellent basis for efficient quantitative magnetization transfer imaging with few constraints on model parameters.

Funder

National Institute of Biomedical Imaging and Bioengineering

National Institute on Aging

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3