A spatiotemporal model for PM2.5 prediction based on the K‐Core idea and label distribution

Author:

Zhang Yizhun1ORCID,Yan Qisheng2

Affiliation:

1. School of Earth Sciences East China University of Technology Nanchang China

2. School of Science East China University of Technology Nanchang China

Abstract

AbstractWith the increasingly severe problem of PM2.5 environmental pollution, the threat to human health is gradually increasing. Therefore, accurate prediction of PM2.5 concentration is of great significance to the healthy life of human beings. To make up for the deficiencies of previous studies on PM2.5 concentration prediction, a spatiotemporal model (Spatiotemporal prediction model of label distribution, LDSPM) for PM2.5 concentration prediction based on the K‐Core algorithm concept and label distribution learning was proposed. Leveraging K‐Core ideas and the label distribution support vector regression model of the label distribution paradigm, the influence weight of each meteorological factor on PM2.5 concentration in each piece of data was obtained with the decomposition of meteorological factors using the complete ensemble empirical mode decomposition of adaptive noise. Using a long short‐term memory neural network to predict each decomposed signal and obtain the forecast data of meteorological factors. Finally, according to the expected weight and meteorological factor data, a particle swarm optimization extreme learning machine is used to train the prediction, and the predicted value of PM2.5 is obtained. The experimental results show that the forecasting model performs better than other combined and single forecasting models. It provides new directions and ideas for PM2.5 concentration prediction.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3