Computational model‐based hemodynamic comparisons of traditional and modified idealized models of autologous radiocephalic fistula

Author:

Wang Fan1ORCID,Wang Baohui1,Guo Jinfeng1,Zhang Tian1,Mu Weina12,Liu Chunhui3

Affiliation:

1. School of Quality and Technical Supervision Hebei University Baoding Hebei China

2. Ultrasonography Department Baoding No.1 Central Hospital Baoding Hebei China

3. Affiliated Hospital of Hebei University/School of Clinical Medicine Hebei University Baoding Hebei China

Abstract

AbstractAutologous arteriovenous fistula (AVF) is a commonly used vascular access (VA) for hemodialysis, and hemodynamic changes are one of the main factors for its failure. To explore the effect of geometry on the hemodynamics in the AVF, a modified model is built with a gradual and smooth turn at the anastomosis and is compared with the traditional model, which has an abrupt sharp turn at the anastomisis. Transient computational fluid dynamics (CFD) simulations were performed for the comparison and analysis of the hemodynamic fields of the two models at different stages of the pulse cycle. The results showed that the low shear stress region and high oscillatory shear stress region in the modified AVF model coincided with regions of intimal hyperplasia that have been identified by previous studies. A comparison with the blood flow velocities measured in vivo was performed, and the error between the simulation results and the medical data was reduced by 22% in the modified model, which verifies the rationality and utility of the modified model.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3