Affiliation:
1. School of Electrical and Information Engineering Changzhou Institute of Technology Changzhou China
2. School of Electrical and Engineering Suihua University Suihua China
3. School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin China
Abstract
AbstractDesign of core–shell structure for ceramic filler is an effective way to improve the electric insulation property of polymer matrix. However, it still faces the disadvantage of a low dielectric constant, inhibiting the increase in energy storage density. Herein, we propose an effective strategy for regulating shell thickness to induce dielectric polarization, which simultaneously improves dielectric constant and breakdown strength of polyvinylidene difluoride (PVDF)‐based nanocomposite incorporated by core–shell structured BaTiO3@SiO2 (BT@SO) nanoparticles. The results show that BT@SO fillers with a moderate SiO2 shell thickness of 15 nm and a low content of 1.0 vol% enhances dielectric constant and breakdown strength of PVDF‐based nanocomposite to 14.7 and 500.5 MV/m, respectively. Compared with pure PVDF, the dielectric constant and breakdown strength of PVDF/BT@SO are increased by 82.2% and 61.3%, respectively. Comprehensively, its discharge energy density is enhanced by 352%, up to 12.2 J/cm3, which is attributed to the high induced polarization of charge confinement and the multi‐function combined effects of SiO2 shell as a deep trap, barrier and adsorption layer. This study provides more insight into the interface control mechanism of core–shell nanostructure, and offers a theoretical basis for designing polymer nanocomposites with high energy storage density.
Subject
Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献