Deciphering the Molecular Complexity of Hepatocellular Carcinoma: Unveiling Novel Biomarkers and Therapeutic Targets Through Advanced Bioinformatics Analysis

Author:

Moghimi Ata1,Bani Hosseinian Nasrin1,Mahdipour Mahdi23,Ahmadpour Ehsan4,Miranda‐Bedate Alberto5,Ghorbian Saeid6ORCID

Affiliation:

1. Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran

2. Stem Cell Research Center, Tabriz University of Medical Sciences Tabriz Iran

3. Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran

4. Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran

5. Department of Data Science EURETOS Utrecht The Netherlands

6. Department of Molecular Genetics Ahar Branch, Islamic Azad University Ahar Iran

Abstract

ABSTRACTBackgroundHepatocellular carcinoma (HCC) represents a primary liver tumor characterized by a bleak prognosis and elevated mortality rates, yet its precise molecular mechanisms have not been fully elucidated. This study uses advanced bioinformatics techniques to discern differentially expressed genes (DEGs) implicated in the pathogenesis of HCC. The primary objective is to discover novel biomarkers and potential therapeutic targets that can contribute to the advancement of HCC research.MethodsThe bioinformatics analysis in this study primarily utilized the Gene Expression Omnibus (GEO) database as data source. Initially, the Transcriptome analysis console (TAC) screened for DEGs. Subsequently, we constructed a protein–protein interaction (PPI) network of the proteins associated to the identified DEGs with the STRING database. We obtained our hub genes using Cytoscape and confirmed the results through the GEPIA database. Furthermore, we assessed the prognostic significance of the identified hub genes using the GEPIA database. To explore the regulatory interactions, a miRNA‐gene interaction network was also constructed, incorporating information from the miRDB database. For predicting the impact of gene overexpression on drug effects, we utilized CANCER DP.ResultsA comprehensive analysis of HCC gene expression profiles revealed a total of 4716 DEGs, consisting of 2430 upregulated genes and 2313 downregulated genes in HCC sample compared to healthy control group. These DEGs exhibited significant enrichment in key pathways such as the PI3K‐Akt signaling pathway, nuclear receptors meta‐pathway, and various metabolism‐related pathways. Further exploration of the PPI network unveiled the P53 signaling pathway and pyrimidine metabolism as the most prominent pathways. We identified 10 hub genes (ASPM, RRM2, CCNB1, KIF14, MKI67, SHCBP1, CENPF, ANLN, HMMR, and EZH2) that exhibited significant upregulation in HCC samples compared to healthy control group. Survival analysis indicated that elevated expression levels of these genes were strongly associated with changes in overall survival in HCC patients. Lastly, we identified specific miRNAs that were found to influence the expression of these genes, providing valuable insights into potential regulatory mechanisms underlying HCC progression.ConclusionThe findings of this study have successfully identified pivotal genes and pathways implicated in the pathogenesis of HCC. These novel discoveries have the potential to significantly enhance our understanding of HCC at the molecular level, opening new ways for the development of targeted therapies and improved prognosis evaluation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3