Dryland river regime shifts in Iran: Drivers and feedbacks

Author:

Rahimi Majid1ORCID,Ghorbani Mehdi1,Ahmadaali Khaled1,Salajeghe Ali1,Azadi Hossein2

Affiliation:

1. Department of Reclamation of Arid and Mountainous Regions, Faculty of Natural Resources University of Tehran Karaj Iran

2. Department of Economics and Rural Development Gembloux Agro‐Bio Tech, University of Liège Gembloux Belgium

Abstract

AbstractIn the Anthropocene, human activities have created unprecedented changes and nonlinear relationships between humans and nature. These changes can be much faster and more intense in arid and semiarid areas that have been affected by intense human activities. Iran has climates from very humid to very dry, but arid and semiarid climates cover the country's largest area. Many of these arid areas have undergone severe changes in their surface and groundwater ecosystems in recent years, which have caused severe damage to humans and the environment in the area and surrounding areas. Therefore, in this study, using the theory of regime shifts, the time series of the Zayandeh‐Rud River Basin in the center of Iran were analyzed. First, the data of the desired time series in the period of 1986–2018 was arranged seasonally. Then, using the sequential t‐test method, regime shifts in these time series were identified, and then, causal loop diagrams of these shifts and their drivers and feedbacks were interpreted. The results showed that in the time series of quantity and quality of surface water and groundwater level in the studied stations and aquifers, regime shifts can be identified. Regime shifts were also identified in the time series of agricultural land area. These shifts have occurred with the increase in human activities since the early 1950s in the metropolis of Isfahan, the increase in agricultural and industrial exploitation, and consequently, the increase in population. When this reinforcing feedback loop becomes dominant, the Zayandeh‐Rud River system has shifted from a regime of rich water resources to a regime of poor water resources. However, by recognizing and systematically analyzing these shifts, the Zayandeh‐Rud River system can be directed toward a sustainable system through structural reform, negotiation, and redefining goals.

Publisher

Wiley

Subject

General Environmental Science,Water Science and Technology,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3