Unsupervised motion artifact correction of turbo spin‐echo MRI using deep image prior

Author:

Lee Jongyeon12ORCID,Seo Hyunseok2ORCID,Lee Wonil34ORCID,Park HyunWook1ORCID

Affiliation:

1. School of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea

2. Bionics Research Center Biomedical Research Division, Korea Institute of Science and Technology (KIST) Seoul Republic of Korea

3. Gordon Center for Medical Imaging, Department of Radiology Massachusetts General Hospital Boston Massachusetts USA

4. Department of Radiology Harvard Medical School Boston Massachusetts USA

Abstract

AbstractPurposeIn MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time‐consuming and resource‐intensive. In this paper, an unsupervised deep learning‐based motion artifact correction method for turbo‐spin echo MRI is proposed using the deep image prior framework.Theory and MethodsThe proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion‐corrupted images from the motion‐corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images.ResultsIn the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root‐sum‐of‐square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential.ConclusionThe proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in‐plane motion artifacts in MR images acquired using turbo spin‐echo sequence.

Funder

Korea Health Industry Development Institute

Korea Institute of Science and Technology

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3