A novel technique using stretching, repulsion, and chimp optimization algorithm to find global maximum power point considering complex partial shading conditions

Author:

Ashraf Hafiz Muhammad1ORCID,Elahi Muqaddas1ORCID,Kim Chul‐Hwan1

Affiliation:

1. Department of Electrical and Computer Engineering Sungkyunkwan University Suwon Republic of Korea

Abstract

SummaryThe demand for green energy sources has led to the exploration of photovoltaic (PV) systems as a sustainable and cost‐effective solution. However, PV systems have an uncertain nature that makes the tracking of global maximum power point a challenge. To get the optimal benefits from the PV source, the extraction of power is required in a precise manner, especially in the case of irregular complex partial shading conditions (CPSCs). In the case of CPSCs, the global maximum point tracking (GMPP) is a bit difficult to manage by the conventional algorithms presented so far. As the power peaks increase with CPSCs, the conventional algorithms are usually stuck in the local maxima. To avoid sticking at all the local maxima points and to find GMPP with better efficiency, stretching is used here along with the repulsion technique. Stretching and repulsion techniques are merged with the chimp optimization algorithm (SRCA). The tuning parameters of SRCA are so effective that remove all local points and lead to finding the GMPP accurately. The proposed algorithm is applied to the PV array to extract optimal power off‐grid and on‐grid as well. The average tracking time and output power efficiency in the case of off‐grid is observed as 0.4 s and 99.87% while in the case of on‐grid as 0.09 s and 98.88%, respectively.

Funder

Korea Institute of Energy Technology Evaluation and Planning

National Research Foundation of Korea

Publisher

Wiley

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3