Affiliation:
1. Department of Acupuncture and Moxibustion First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin China
2. National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion Tianjin China
3. Tianjin University of Traditional Chinese Medicine Tianjin China
4. Department of Traditional Chinese Medicine Tianjin Medical University General Hospital Tianjin China
5. Department of Information Science and Engineering Yunnan University Kunming, Yunnan Province China
Abstract
AbstractBackgroundAngiogenesis is an important mechanism of recovery from ischemic stroke. Recent studies have found that there is a close relationship between the VEGF/Notch pathway and angiogenesis. It is unknown whether EA can exert a brain protection effect and promote angiogenesis by acting on the VEGF/Notch signaling pathway after focal cerebral ischemia‐reperfusion injury (CIRI).MethodsThe Middle Cerebral Artery occlusion/Reperfusion (MCAo/R) model was established, in which rats were subjected to occlusion with ischemic intervention for 30 min, followed by reperfusion for 8 h, 1 day, 3 days, and 7 days. The first EA treatment was performed 90 min after the animal model was successfully established, and then EA treatments were performed once a day for 7 days. The 2,3,5‐triphenyltetrazolium chloride staining and neurological deficit examination were performed to assess the level of CIRI and neuroprotection by EA. Expression levels of VEGFA, Notch1, and Hes1 proteins were measured via western blotting, while the morphological changes of ECs and microvasculature in the cortex were determined using an ultrastructural observation method.ResultsEA treatment of PC6, GV26, and SP6 can significantly improve the neurological function of MCAO/R rats, reduce the volume of cerebral infarction, and modulate the ultrastructure of ECs and microvessels in pathological states. Western blotting revealed that EA increased VEGFA protein expression at 8 h and 3 days after CIRI, as well as Notch1 protein expression at 1 and 7 days. Subsequently, EA activated the VEGF/Notch pathway, increasing the expression of the downstream target protein Hes1, reversing EC death, and promoting angiogenesis.ConclusionOur findings showed that EA plays a role in promoting angiogenesis following focal CIRI, and we hypothesized that this was due to the regulation of ECs by the EA‐activated VEGF/Notch signaling pathway.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Tianjin City
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献