Electroacupuncture reverses endothelial cell death and promotes angiogenesis through the VEGF/Notch signaling pathway after focal cerebral ischemia‐reperfusion injury

Author:

Zhang Wenyu123ORCID,Han Lin12ORCID,Wen Yan4,Su Lixian123,Li Yibing123ORCID,Luo Xudong5

Affiliation:

1. Department of Acupuncture and Moxibustion First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin China

2. National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion Tianjin China

3. Tianjin University of Traditional Chinese Medicine Tianjin China

4. Department of Traditional Chinese Medicine Tianjin Medical University General Hospital Tianjin China

5. Department of Information Science and Engineering Yunnan University Kunming, Yunnan Province China

Abstract

AbstractBackgroundAngiogenesis is an important mechanism of recovery from ischemic stroke. Recent studies have found that there is a close relationship between the VEGF/Notch pathway and angiogenesis. It is unknown whether EA can exert a brain protection effect and promote angiogenesis by acting on the VEGF/Notch signaling pathway after focal cerebral ischemia‐reperfusion injury (CIRI).MethodsThe Middle Cerebral Artery occlusion/Reperfusion (MCAo/R) model was established, in which rats were subjected to occlusion with ischemic intervention for 30 min, followed by reperfusion for 8 h, 1 day, 3 days, and 7 days. The first EA treatment was performed 90 min after the animal model was successfully established, and then EA treatments were performed once a day for 7 days. The 2,3,5‐triphenyltetrazolium chloride staining and neurological deficit examination were performed to assess the level of CIRI and neuroprotection by EA. Expression levels of VEGFA, Notch1, and Hes1 proteins were measured via western blotting, while the morphological changes of ECs and microvasculature in the cortex were determined using an ultrastructural observation method.ResultsEA treatment of PC6, GV26, and SP6 can significantly improve the neurological function of MCAO/R rats, reduce the volume of cerebral infarction, and modulate the ultrastructure of ECs and microvessels in pathological states. Western blotting revealed that EA increased VEGFA protein expression at 8 h and 3 days after CIRI, as well as Notch1 protein expression at 1 and 7 days. Subsequently, EA activated the VEGF/Notch pathway, increasing the expression of the downstream target protein Hes1, reversing EC death, and promoting angiogenesis.ConclusionOur findings showed that EA plays a role in promoting angiogenesis following focal CIRI, and we hypothesized that this was due to the regulation of ECs by the EA‐activated VEGF/Notch signaling pathway.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

Wiley

Subject

Behavioral Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3