Bearing capacity and failure mechanism of strip footings lying on slopes subjected to various rainfall patterns and intensities

Author:

Zhang Wengang1,Gu Xin1,Ou Qiang1ORCID

Affiliation:

1. School of Civil Engineering Chongqing University Chongqing China

Abstract

Footing on slope is a prevalent construction encountered in geotechnical engineering, and its safety is receiving increased attention. A natural rainfall event will inevitably have adverse influences on the stability and bearing capacity of strip footings lying on slopes; however, the conventional practice to simulate the rainfall is realized by varying the soil moisture content and the actual rainfall characteristics cannot be fully reflected. As a result, the finite element (FE) software ABAQUS is employed in this study to model the temporally varying rainfall, and the bearing capacity, as well as failure mode of the strip footing placed at the top of slopes, is estimated accordingly. A series of FE analyses are carried out to quantify the influences of rainfall pattern, rainfall intensity, soil strength properties (i.e., effective cohesion c′ and effective friction angle φ′) and several geometric parameters associated with the location of embedded footing with B in width, such as the edge distance ratio L/B and the embedded depth ratio D/B. Results show that the bearing capacity will be decreased and the failure mode evidently changes under rainfall condition. Moreover, it is noted that the rainfall pattern produces less substantial impact on the bearing capacity and failure mode, compared with the rainfall intensity.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3