Deep learning‐based response spectrum analysis method for building structures

Author:

Kim Taeyong1ORCID,Kwon Oh‐Sung2ORCID,Song Junho3ORCID

Affiliation:

1. Department of Civil Systems Engineering Ajou University Suwon South Korea

2. Department of Civil and Mineral Engineering University of Toronto Toronto Canada

3. Department of Civil and Environmental Engineering Seoul National University Seoul South Korea

Abstract

AbstractThe response spectrum method has gained widespread acceptance in practical applications owing to its favorable compromise between accuracy and practical efficiency. The method predicts the peak responses of multi‐degree‐of‐freedom (MDOF) systems by combining modal responses. The Square Root of the Sum of Squares (SRSS) and Complete Quadratic Combination (CQC) rules are commonly used for modal combinations. However, it has been widely known that these rules have limitations in accurately predicting responses influenced by higher modes and cross‐modal correlations. To improve the accuracy of the response spectrum analysis method for building structures, this paper proposes a Deep learning‐based modal Combination (DC) rule by introducing modal contribution coefficients predicted by a deep neural network (DNN) model. The DC rule enhances prediction accuracy by considering the characteristics of ground motion and the dynamic properties of a structural system. The DC rule provides more accurate predictions than the conventional rules, particularly for irregular response spectra and responses affected by higher modes. The efficiency and applicability of the DC rule are demonstrated by numerical investigations of multistory shear buildings and steel frame structures with regular and irregular shapes. The source codes, data, and trained models are available for download at https://github.com/tyongkim/ERD2.

Funder

National Research Foundation of Korea

Institute of Construction and Environmental Engineering, Seoul National University

Western Canada Research Grid

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3