Effects of A‐ and B‐type starch granules on composition, structural, thermal, morphological, and pasting properties of starches from diverse wheat varieties

Author:

Kumar Rajesh1,Singh Narpinder2,Khatkar Bhupendar Singh123ORCID

Affiliation:

1. Department of Food Technology Guru Jambheshwar University of Science and Technology Hisar India

2. Graphic Era (Deemed to be) University Dehradun India

3. Megastar Foods Ltd. Chandigarh India

Abstract

AbstractThe distribution of A‐ and B‐type‐sized starch granules plays a deciding role in controlling the physicochemical, structural, morphological, and functional attributes of wheat starch. Starches of three Indian wheat varieties, viz. DBW 16, WH 147, and WH 542, were fractionated into A‐ and B‐type starch granules and further evaluated for their influence on various attributes of wheat starches using different analytical tools like X‐ray diffraction, scanning electron microscopy (SEM), differential scanning calorimetry, and rapid viscoanalyzer. SEM revealed that the size of large granules (A‐type) ranged from 12.6 to 36.4 µm and small granules (B‐type) varied from 2.53 to 7.52 µm. The amylose content was significantly higher for A‐type starch ranging from 26.6% to 29.68% than B‐type starch ranging from 19.20% to 22.38%. The highest swelling power was observed for B‐type granules, followed by native and A‐type granules, and similar trend was noticed for water absorption. Pasting viscosities of A‐type granules were higher than B‐type for starches of all wheat varieties. A higher pasting temperature was observed in B‐type starch granules, suggesting more resistance to swell during the heating process. X‐ray diffraction of wheat starches showed A‐type pattern of crystallinity, variety DBW 16 (27%) showed the highest relative crystallinity and intensities of peaks in comparison to varieties WH 147 (23.5%) and WH 542 (22.4% as observed in diffractograms and well supported by Fourier transforms infrared spectroscopy. Fractionated large granules of wheat starches exhibited a higher gelatinization temperature than smaller granules and native starches for all the varieties. It was also observed that A‐type granules had higher onset temperature comparatively, which suggested that high energy is required in gelatinization due to more ordered arrangement of starch molecules.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3