Affiliation:
1. Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou Jiangsu 213164 China
Abstract
Comprehensive SummaryDevelopment of heterogeneous molecular photocatalysts for promising light‐driven hydrogen evolution reaction (HER) is highly demanding but still challenging. Here, we report the blue‐greenish emitting dinuclear metal–organic halides as photocatalyst by incorporating site‐specific single copper(I) atoms that exhibit an efficient carbon‐negative H2 production. Interestingly, the electronic properties, including the spin and charge density of central Cu(I) active site, can be triggered by substituent modulation in metal–organic halides, which greatly affect the exciton dissociation kinetics and thus the HER reactivity. The optimized spin density in these heterogeneous photocatalysts drastically boosts the hydrogen production rate from 1250 to 3130 μmol·g–1·h–1. Our molecular strategy provides a platform that rationally facilitates electronic modulation of copper(I) atoms, tunes the macroscopic optoelectronic properties of photocatalysts and boosts carbon‐negative HER activity, extending the boundaries of conventional molecular‐based photocatalysts.