Affiliation:
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China
2. Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
3. Department of Coal and Syngas Conversion Sinopec Research Institute of Petroleum Processing Beijing 100083 China
Abstract
Comprehensive SummaryConstructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Employing the wide bandgap perovskite materials and low bandgap organic materials as absorber layers for front and rear subcells, respectively, to construct perovskite/organic TSCs can complementarily absorb sunlight in ultraviolet‐visible (UV‐Vis) range by front perovskite and near‐infrared (NIR) range by rear organic molecules, thus reducing the thermalization energy losses. Besides the subcells, the interconnection layer (ICL), which physically and electrically connects the front and rear subcells, is also an important tunnel junction to recombine charges. In this review, we summarize the optimization strategies of wide bandgap perovskites for front subcell, narrow bandgap organic material for rear subcell, and the ICLs employed in monolithic perovskite/organic TSCs.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献