TAG‐Assisted Liquid‐Phase Synthesis and Structure Activity Relationship of Macolacin‐Based Side‐to‐Tail Cyclopeptides Antibiotic

Author:

Li Haidi12,Jin Yuankui12,Pei Minfan12,Zhang Linyan12,Wang Lianjun12,Yang Yuxin12,Xiang Peng12,Liang Taigang12

Affiliation:

1. Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, School of Pharmacy Shanxi Medical University Taiyuan Shanxi 030001 China

2. Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education Shanxi Medical University Taiyuan Shanxi 030001 China

Abstract

Comprehensive SummaryTAG‐assisted peptide synthesis technology enables optimal conservation of Fmoc amino acid raw materials and chemical solvents while eliminating the need for intricate chromatographic purification processes. This work presents a 4,4'‐diphenylphosphonoxy diphenylcarbinol tag‐mediated liquid‐phase synthesis approach for preparing side‐to‐tail cyclopeptides macolacin which has strong activity against gram‐negative bacteria, and its 15 analogues containing four N‐methylation modified cyclopeptides, as well as an investigation of their structure‐activity relationship (SAR). The synthesis of macolacin analogues primarily focuses on the modifications of the N‐methylation group of Ile‐7 and the tail fatty acyl chain of macolacin. The incorporation of N‐methylation for Ile‐7, along with the dihalogenated or monohalogenated benzoic acids for tail modification, exhibited remarkable antibacterial efficacy and minimal hepatocellular toxicity in vitro. The present study identified an N‐methylation‐modified antimicrobial cyclopeptide Ma14 that exhibits rapid bactericidal efficacy against A. baumanii, etc., while showing reduced hepatocellular toxicity. Molecular docking simulations were conducted to investigate the binding of cyclopeptides to the outer membrane protein BamA of A. baumannii. The findings demonstrated the stable binding interactions of the cyclopeptides with the BamA protein and then presented a novel approach to explain the bacteriostatic mechanism of macolacin‐based cyclopeptide antibiotics.

Funder

Shanxi Provincial Key Research and Development Project

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3