Ibuprofen removal by modified natural zeolite: characterization, modeling, and adsorption mechanisms

Author:

Ribeiro Anna Carla12ORCID,Martins Moreira Wardleison3ORCID,Bruguer Ferri Bruna3,dos Federici Santos Débora3,Neves Olsen Scaliante Mara Heloisa3,de da Costa Neves Fernandes Almeida Duarte Elizabeth2,Bergamasco Rosângela3

Affiliation:

1. Department of Biotechnology, Genetics and Cell Biology State University of Maringá Paraná Brazil

2. Linking Landscape, Environment, Agriculture and Food School of Agriculture—University of Lisbon Lisbon Portugal

3. Department of Chemical Engineering State University of Maringá Paraná Brazil

Abstract

AbstractBACKGROUNDDeveloping robust technologies to remove emerging pollutants from water is urgent since conventional treatments are not technically prepared to remove them. This paper investigated the ibuprofen (IBU) adsorption capacity onto natural zeolite (NZ) and hydrothermally modified zeolite in an acidic medium followed by impregnation with the cationic surfactant cetyltrimethylammonium bromide (CTAB) (MZHT‐CTAB). The materials characterization included scanning electron microscopy (SEM), X‐ray diffraction (XRD), atomic absorption spectroscopy (AAS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA/DTG), N2 adsorption/desorption isotherm (BET), Zeta Potential (ZP), and Point of Zero Charge (pHPZC). The adsorptive capacity studies were carried out by varying the pH solution, a kinetic study at three concentrations (25, 50, and 100 mg L−1), and the contaminant concentration influence (5–100 mg L−1).RESULTSThe results showed that the MZHT‐CTAB obtained both the highest removal efficiency (~ 37%) and the highest adsorption capacity (~ 14 mg g−1) at pH 5.0. The Pseudo Second‐Order (PSO) model, which showed the best fit to the experimental data, is significant as it indicates the reliability of our results. The maximum adsorption capacity for the concentration of 100 mg L−1 was 11.93 mg g−1. According to Giles's classification, the isotherm was classified as S‐3 type, indicating the competition between the adsorbate and water molecules for the active sites on the adsorbent surface.CONCLUSIONThe adsorption studies demonstrate that the novel adsorbent (MZHT‐CTAB) is highly effective in removing IBU, presenting a significant removal capacity and feasibility. This promising result contributes to the ongoing search for alternative materials for water treatment. © 2024 Society of Chemical Industry (SCI).

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3