Enhanced diclofenac adsorption and degradation using iron‐loaded modified spent bleaching earth carbon in the presence of clofibric acid: mechanistic insights and toxicity assessment

Author:

Zhang Liwen1,Song Xue12,Zhang Jie3,Chen Yue1,Liu Yongde12ORCID,Zhao Jihong4,Deng Fanbao1,Yan Guihua1

Affiliation:

1. College of Environmental Engineering Henan University of Technology Zhengzhou China

2. Zhengzhou Key Laboratory of Organic Waste Resource Utilization Zhengzhou China

3. College of Food Science and Engineering Henan University of Technology Zhengzhou China

4. Henan Open University Zhengzhou China

Abstract

AbstractBACKGROUNDThe presence of pharmaceutical active substances such as diclofenac (DCF) and clofibric acid (CA) in aquatic environments poses significant ecological threats. Existing treatments have not fully explored the impact of CA on DCF removal efficiency. This research introduces nZVI/CTAB‐SBE@C, a novel adsorbent developed from industrial spent bleaching earth (SBE), modified with cetyltrimethylammonium bromide (CTAB) and nano zero‐valent iron (nZVI), enhancing both adsorption and degradation of DCF and CA.RESULTSThis study investigated the impact of CA on the removal capabilities of nZVI/CTAB‐SBE@C for DCF in a coexisting system. Systematic examinations were conducted on the effects of various parameters, including reaction time, dosage, temperature, actual wastewater, humic acid content and coexisting ions. Results indicated that the presence of CA significantly enhanced the DCF removal efficiency, achieving an optimal rate of 87.3% under conditions of reaction time 2 h, adsorbent dosage 5 g L−1 and temperature 25 °C. Moreover, interactions between Al3+ ions and the adsorbent matrix notably improved removal efficiencies for both DCF and CA. Analysis revealed that CA facilitated new degradation pathways for DCF, including hydroxylation and decarboxylation reactions. Additionally, the presence of CA reduced the toxicity of degradation intermediates, enhancing environmental safety compared to systems containing only DCF.CONCLUSIONThis study effectively transforms industrial waste into the efficient nZVI/CTAB‐SBE@C adsorbent. The presence of CA not only boosts DCF removal efficiency but also promotes its safer degradation, thereby reducing the ecological impact of contaminants. © 2024 Society of Chemical Industry (SCI).

Funder

Henan University of Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3