Soil sampling depth effect on critical soil test values of phosphorus for conservation agriculture

Author:

Tiecher Tales1ORCID,Gatiboni Luke2ORCID,Osmond Deanna2ORCID,Hardy David2

Affiliation:

1. Department of Soil Science Federal University of Rio Grande do Sul Porto Alegre Rio Grande do Sul 91540‐000 Brazil

2. Department of Crop and Soil Sciences North Carolina State University Raleigh North Carolina 27695 USA

Abstract

AbstractThe critical soil test value (CSTV) of phosphorus (P) is the threshold where it is possible to obtain 95–100% of the maximum crop yield. Although the P buildup in the topsoil of conservation tillage may affect this threshold, the effect of soil sampling depth on CSTV value has not been determined for conservation tillage in the southern United States. The objective of this study was to evaluate CSTV of P using different soil layers from two long‐term experiments managed under varying P rates, planted to corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] rotation under minimum tillage (Tidewater) or no‐tillage (Piedmont) in North Carolina. Soil samples were taken from depths of 0–2, 2–4, 4–8, and 8–12 inches. The CSTV for different soil layers was calculated using a quadratic‐plateau model with Mehlich‐3 P and relative yield of soybean and corn (2021–2022). The CSTV decreased as the soil sampling depth increased. The CSTV of P at the Tidewater site was 128, 111, 86, and 74 lb ac−1, and at the Piedmont site was 28, 20, 16, and 15 lb ac−1 for the 0–2, 0–4, 0–8, and 0–12 inches soil layers, respectively. Using multiple sampling layers or deeper layers did not improve the quality of CSTV measurement. The current sampling depths used in North Carolina are appropriate for minimum tillage (0–8 inches) and no tillage (0–4 inches), as similar quality models were obtained using either soil layers in both sites. However, it is important to be cautious when changing the sampling depth, as this affects the CSTV value.

Funder

North Carolina Soybean Producers Association

Publisher

Wiley

Subject

Plant Science,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3