Reachable set estimation of delayed Markovian jump neural networks based on an augmented zero equality approach

Author:

Kim S. H.1ORCID,Kim Y. J.2ORCID,Lee S. H.3ORCID,Kwon O. M.2ORCID

Affiliation:

1. Power System Research Laboratory Korea Electric Power Corporation Research Institute Daejeon Republic of Korea

2. School of Electrical Engineering Chungbuk National University Cheongju Republic of Korea

3. Division of Electronics and Electrical Information Engineering National Korea Maritime & Ocean University Busan Republic of Korea

Abstract

AbstractThis article suggests the methods to estimate the reachable set of Markovian jump neural networks (MJNNs) with time‐varying delays. By building up improved Lyapunov–Krasovskii functionals, the conditions that have less conservatism for the delay‐dependent can be obtained. Integral inequalities are employed to estimate the reachable set of MJNNs, resulting in more effective and conservative outcomes regarding time delays. Moreover, some mathematical techniques, the augmented zero equality approach, improve the results and eliminated the free variables. Two numerical examples and figures demonstrated that the proposed method was effective and provided less conservative results than previous research.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3