Genetic analysis reveals a complex mosaic of admixture in Brook Trout in a historically fragmented watershed

Author:

Lamy Jared B.1,O'Donnell Brigid C.1,Villamagna Amy M.2,Morrill Tyson R.1,Nugent Ben J.3,Hoekwater Joshua C.2

Affiliation:

1. Biological Sciences, Center for the Environment Plymouth State University Plymouth New Hampshire USA

2. Environmental Science and Policy Program, Center for the Environment Plymouth State University Plymouth New Hampshire USA

3. New Hampshire Department of Fish and Game New Hampton New Hampshire USA

Abstract

AbstractObjectiveAssess how historical fragmentation in the form of perched culverts impacts Brook Trout Salvelinus fontinalis genetic diversity and differentiation in the Beebe River watershed (central New Hampshire), the site of a major culvert removal project in 2017.MethodsWe collected genetic samples from Brook Trout one year prior to (2016), and two years following (2018 and 2019) culvert removal from six tributaries in the watershed. We used two analytical approaches, STRUCTURE and discriminant analysis of principal components, to determine the degree to which admixture was occurring and the levels of genetic diversity in the sampled populations. We also compared pairwise FST values to measure the genetic differentiation between tributaries.ResultThe analysis revealed that the tributaries with impassable culverts (GR1, GR3, and GR5) exhibited a distinct genetic cluster, indicating genetic homogeneity. In contrast, the tributaries without barriers (GR2, ECR1, and GR4) showed a mixture of individuals assigned to multiple genetic clusters, indicating genetic admixture and high diversity. Culvert outlet drop heights correlated with the level of genetic differentiation and diversity. Culvert replacement did not immediately result in significant changes in the genetic composition of the Brook Trout populations. Fish in tributaries with culverts remained genetically distinct from those in other tributaries even two years after culvert removal.ConclusionThe study demonstrates that historical fragmentation caused by culverts has influenced the population genetic structure of Brook Trout in the Beebe River watershed. Culvert replacement did not lead to immediate changes in genetic composition, suggesting that other factors, such as prespawning behavior and geomorphological disturbances, may have limited fish movement and spawning after culvert removal. The findings highlight the importance of considering the specific characteristics of culverts and their interactions with habitat conditions in assessing their impacts on genetic connectivity.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3