Discrimination of vocal folds lesions by multiclass classification using autofluorescence spectroscopy: An ex vivo study

Author:

Gaiffe Olivier12ORCID,Mahdjoub Joackim1ORCID,Ramasso Emmanuel3,Mauvais Olivier1ORCID,Lihoreau Thomas4,Pazart Lionel4,Wacogne Bruno34,Tavernier Laurent12

Affiliation:

1. Department of Otolaryngology – Head and Neck Surgery CHU de Besançon Besançon France

2. Laboratoire de Nanomédecine, Imagerie et Thérapeutiques, EA4662 Université de Franche‐Comté Besançon France

3. Institut FEMTO‐ST UMR61742, Université de Franche‐Comté, ENSMM, CNRS Besançon France

4. Inserm CIC 1431 CHU Besançon Besançon France

Abstract

AbstractBackgroundAutofluorescence spectroscopy is effective for noninvasive detection but underutilized in tissue with various pathology analyses. This study evaluates whether AFS can be used to discriminate between different types of laryngeal lesions in view of assisting in vocal fold surgery and preoperative investigations.MethodsA total of 1308 spectra were recorded from 29 vocal fold samples obtained from 23 patients. Multiclass analysis was performed on the spectral data, categorizing lesions into normal, benign, dysplastic, or carcinoma.ResultsThrough an appropriate selection of spectral components and a cascading classification approach based on artificial neural networks, a classification rate of 97% was achieved for each lesion class, compared to 52% using autofluorescence intensity.ConclusionsThe ex vivo study demonstrates the effectiveness of AFS combined with multivariate analysis for accurate classification of vocal fold lesions. Comprehensive analysis of spectral data significantly improves classification accuracy, such as distinguishing malignant from precancerous or benign lesions.

Funder

Agence Nationale de la Recherche

Seventh Framework Programme

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3