Application program interface for automatic segmentation of retinal layers and fluids in Optical Coherence Tomography ‐ Neovascular Age related Macular degeneration retinal images using deep learning models

Author:

Jeya Prabha A.1ORCID,Sameera Fathimal M.1ORCID,Meghana G. R.2ORCID,Angeline Kirubha S. P.1ORCID

Affiliation:

1. Department of Biomedical Engineering SRM Institute of Science and Technology Kattankulathur Tamil Nadu India

2. Department of Ophthalmology SRM Medical College Hospital and Research Centre Kattankulathur Tamil Nadu India

Abstract

AbstractOptical coherence tomography is a non‐invasive imaging technique that provides micrometer‐resolution images of retinal structures. These images can assist in identifying changes under the retina's surface, such as edema. This study proposes a novel deep learning model AR U‐Net++ for segmenting retinal layers and fluids. The four retinal layers ILM (Internal Limiting Membrane), IPL (Inner Plexiform Layer), RPE (Retinal Pigment Epithelium), BM (Bruch Membrane), and IRF (Intra Retinal Fluid), SRF (Sub Retinal Fluid), and PED (Pigment Epithelial Detachment) are segmented using AR U‐Net++. The proposed architecture AR U‐Net++ achieves better accuracy (99.67%), mean IoU (0.84), and dice coefficient (0.94) than the existing models of U‐Net, AR U‐Net, and AR W‐Net. The novelty of the suggested model AR U‐Net++ is to identify the exact location and depth of the retinal fluid in between the retinal layers and generating reports that aids the clinicians in the diagnosis of Age related Macular Degeneration.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Software,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3