Dual‐laser pulse‐patterned α‐Co(OH)2/rGO heterointerface for accelerated water oxidation and surface phase‐transition via in‐situ Raman spectroscopy

Author:

Lee Yeryeong1,Theerthagiri Jayaraman1,Min Ahreum2,Moon Cheol Joo2,Choi Myong Yong12ORCID

Affiliation:

1. Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences Gyeongsang National University Jinju Republic of Korea

2. Core‐Facility Center for Photochemistry & Nanomaterials Gyeongsang National University Jinju Republic of Korea

Abstract

AbstractThe dynamic surface reconstruction of electrodes is a legible sign to understand the deep phase‐transition mechanistic and electrocatalytic origin during the oxygen evolution reaction (OER). Herein, we report a dual‐laser pulse‐patterned heterointerface of α‐Co(OH)2 and reduced graphene oxide (rGO) nanosheets via pulsed laser irradiation in liquid (PLIL) to accelerate OER kinetics. α‐Co(OH)2 was formed from the OH ions generated during the PLIL of GO at neutral pH. Co2+ modulation in tetrahedral coordination sites benefits as an electrophilic surface for water oxidation. Few d‐vacancies in Co2+ increase its affinity toward oxygen, lowering the energy barrier and generating many CoOOH and CoO2 active sites. rGO with an ordered π‐conjugated system aids the surface adsorption of OOH*, O*, and OH* during OER. α‐Co(OH)2 surface phase‐transition and OER mechanistic steps occurred via phase‐reconstruction to CoOOH and CoO2 reactive intermediates, uncovered using in situ electrochemical–Raman spectroscopy. Our findings in the dual‐laser pulse strategy and the surface reconstruction correlation in active OER catalysts pave the path for paramount in multiple energy technologies.image

Funder

Korea Basic Science Institute

National Research Foundation of Korea

Publisher

Wiley

Subject

Materials Science (miscellaneous),Physical and Theoretical Chemistry,Chemistry (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3