Catalytic role of biogenic gold nanoparticles in improving Cr(VI) removal efficiency of biocathode microbial fuel cells

Author:

Tang Shien1,Zhuang Xinglei1,Zhao Wanqi1,Liang Jinhua1,Zeng Yang1,Xin Fengxue1ORCID,Dong Weiliang1ORCID,Jia Honghua1,Wu Xiayuan1ORCID

Affiliation:

1. College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China

Abstract

AbstractBACKGROUNDBiogenic metal nanoparticle‐modified electrodes have a promising prospect for improving the efficiency of microbial fuel cells (MFCs) for hexavalent chromium (Cr(VI))‐containing wastewater treatment. In this study, a graphene (GO) electrode was modified with chemical gold nanoparticles (ChemAu) and biogenic gold nanoparticles (BioAu), respectively, and the two modified electrodes were then used as MFC biocathode electrodes to treat Cr(VI)‐containing wastewater.RESULTSThe results demonstrated that the BioAu/GO biocathode‐based MFC obtained the highest power density (95.78 ± 1.11 mW m−2) and Cr(VI) removal rate (2.17 ± 0.51 mg L−1 h), which were 13.19 and 1.03 times higher than those of the graphite paper biocathode‐based MFC, respectively. The Cr(VI) removal efficiency of the BioAu/GO biocathode‐based MFC under close‐circuit condition reached 87.61 ± 0.19%, which was 3.74 times higher than that recorded under open‐circuit conditions, indicating the critical role of the bioelectrochemical reduction reaction mediated by the BioAu/GO biocathode on Cr(VI) removal.CONCLUSIONThe BioAu/GO electrode first confirmed its superior performance to the ChemAu/GO electrode in Cr(VI)‐reducing MFCs due to its excellent material properties. This study provides a technical reference for the exploration of efficient bioelectrode materials based on biogenic metal nanoparticles for MFCs to treat recalcitrant pollutant‐containing wastewater. © 2024 Society of Chemical Industry (SCI).

Funder

National Key Research and Development Program of China

Jiangsu National Synergistic Innovation Center for Advanced Materials

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3