Dual atomic catalysts from COF‐derived carbon for CO2RR by suppressing HER through synergistic effects

Author:

Liu Minghao12,Liu Sijia1,Xu Qing13ORCID,Miao Qiyang1,Yang Shuai34,Hanson Svenja2,Chen George Zheng5,He Jun2,Jiang Zheng34,Zeng Gaofeng13

Affiliation:

1. CAS Key Laboratory of Low‐Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI) Chinese Academy of Sciences (CAS) Shanghai People's Republic of China

2. Department of Chemical and Environmental Engineering University of Nottingham Ningbo China Ningbo People's Republic of China

3. School of Chemical Engineering University of Chinese Academy of Sciences Beijing People's Republic of China

4. Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute Chinese Academy of Science Shanghai People's Republic of China

5. Department of Chemical and Environmental Engineering University of Nottingham Nottingham UK

Abstract

AbstractThe electrochemical carbon dioxide reduction reaction (CO2RR) for high‐value‐added products is a promising strategy to tackle excessive CO2 emissions. However, the activity of and selectivity for catalysts for CO2RR still need to be improved because of the competing reaction (hydrogen evolution reaction). In this study, for the first time, we have demonstrated dual atomic catalytic sites for CO2RR from a core–shell hybrid of the covalent–organic framework and the metal–organic framework. Due to abundant dual atomic sites (with CoN4O and ZnN4 of 2.47 and 11.05 wt.%, respectively) on hollow carbon, the catalyst promoted catalysis of CO2RR, with the highest Faradic efficiency for CO of 92.6% at –0.8 V and a turnover frequency value of 1370.24 h–1 at –1.0 V. More importantly, the activity and selectivity of the catalyst were well retained for 30 h. The theoretical calculation further revealed that CoN4O was the main site for CO2RR, and the activity of and selectivity for Zn sites were also improved because of the synergetic roles.

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3