A bold new purpose for an old method: Using invertebrate kick‐netting to improve monitoring of microplastic pollution in running waters

Author:

Mora‐Teddy Aidan1ORCID,Closs Gerry P.2,Matthaei Christoph D.2

Affiliation:

1. Department of Zoology University of Otago Division of Sciences New Zealand

2. Department of Zoology University of Otago New Zealand

Abstract

AbstractFreshwaters are impacted by many pollutants. Scientists and resource managers need to reliably detect and monitor these pollutants by employing appropriate sampling techniques to quantify and mitigate their impacts. Emerging freshwater contaminants such as microplastics are difficult to monitor as effective sampling techniques have not been fully developed and lack standardization. Here, we propose a novel method, adapted from stream invertebrate kick‐net sampling, which can be employed for long‐term, standardized microplastic monitoring. We hypothesized that invertebrate kick‐net sampling would be effective at collecting microplastics, capturing higher microplastic concentrations than standard microplastic sampling, due to collecting suspended and benthic microplastics simultaneously. We sampled 28 streams for microplastics using standard drift and sediment microplastic collection methods and invertebrate kick‐netting. As predicted, kick‐netting captured microplastics at higher concentrations than conventional sampling, regardless of whether values were expressed per volume of water (as in drift samples), per kg of sediment or per area sampled (as in benthic samples). Consequently, kick‐net sampling has the potential to be a time‐ and cost‐efficient tool for monitoring microplastic pollution. We recommend the employment of invertebrate kick‐netting as a new, standardized means to investigate and routinely monitor microplastic concentrations worldwide. This would generate a more robust dataset of global freshwater microplastic pollution, making it possible to answer unresolved questions pertaining to changes in microplastic pollution profiles. Standardized, long‐term records of microplastic concentrations in freshwaters would also allow a more accurate assessment of the ecological risks of microplastic pollution. Finally, long‐term microplastic data could be used to inform much‐needed regulatory decisions pertaining to microplastic pollution.

Funder

Department of Zoology, University of Otago

Publisher

Wiley

Subject

Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3